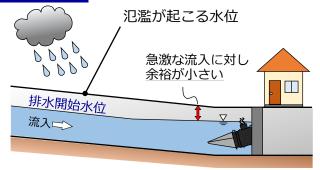
全速全水位型横軸水中ポンプは期待に応えます。

() ISHIGAKI (ISHIGAKI

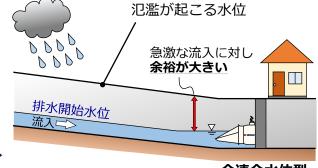

これまでの水中ポンプ

従来型



これからの水中ポンプ

全速全水位型



導入効果

従来型 横軸水中ポンプ

排水開始水位が高いため、急な流入により、短時間 で氾濫が起こる水位まで上昇します。

GOOD! なポイント

全速全水位型 横軸水中ポンプ

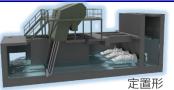
低水位から排水を開始し、水路内水位を低く抑え る事で、**急激な流入に対し余裕が生まれます**。

設計基準

効率的・効果的な浸水対策に資するポンプゲート設備に関する技術マニュアル -2019年3月-

【発行】公益財団法人 日本下水道新技術機構

確かな信頼


- NETIS(SK-180016-A) 登録製品
- NNTD (1288) 登録製品

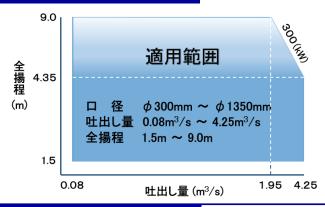
●日本下水道事業団 新技術 I 類 選定製品

適用事例 🚺 ishigaki

株式会社 石 垣 TEL: 03-6848-7831

ポンプゲート形

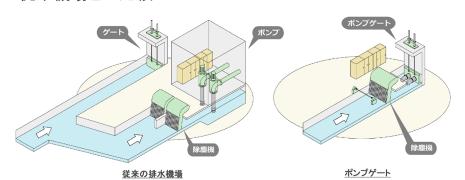
ポンプゲート設備に関する 技術マニュアル


先行待機 排 待 機 気中運転 気水混合運転 気水混合運転 排水待機運転 全量排水運転 排水状態 無排水状態 空気+水を混合排水状態 空気+水を混合排水状態 無排水状態 先行待機運転 吸込側水位に応じて 従来ポンプと同様 吸込側水位に応じて 運転継続 ※タイマーでの停止可能 排水量は変動 排水量は変動 ※タイマーでの停止可能 回転速度100% **100**% 排水停止 排水開始 10~100% 30~100% **30**% 気中運転による先行待機時の消費電力は全量排水運転時の10% **10**% (排水停止後の待機運転時は30%)

ポンプ回転速度

吸込側-

消費電力



従来技術との比較

項目		従来技術	『全速全水位型』
設備 条件	(機械)	超低水位型	全速全水位型
	(電気)	インバータ設備有り	インバータ設備不要
設備の信頼性		-	優れる
浸水対策効果		_	優れる
耐用 年数	(機械)	-	同左
	(電気)	-	優れる
維持 管理性	(点検)	-	同左
	(操作•運用)	_	優れる
イニシャルコスト指数		100	90
ランニングコスト指数 (20年)		100	65

ポンプゲートとは

■ 従来機場との比較

【ポンプゲートの特長】-

- ・新規用地の取得が最小限
- ・ポンプ用の建屋が不要
- ・機器点数が少ない

【メリット】 -

- ・建設費、維持管理費が安価
- ・建設工事の期間が短い
- ・維持管理が容易

